$\%$ CMATPoint

GMAT Arithmetic

Formulas PDF

By GMATPoint.com

GMAT Arithmetic Formulas [PDF]

- Integers $\in\{\ldots-5,-4,-3,-2,-1,0,1,2,3,4,5 \ldots\}$
- If integer a is divisible by b, then $a=n b$, i.e n is a natural number.
- a is a multiple of $b ; b$ is a divisor/factor of a.
- $\mathrm{a}=\mathrm{nb}+\mathrm{q}$
- $\mathrm{a}=$ dividend
- $\mathrm{n}=$ quotient
- $\mathrm{b}=$ divisor
- $\mathrm{q}=$ reminder

$$
\text { Ex: } 29=4^{*} 7+1
$$

50 CMATPoint

- Even integer \rightarrow divisible by 2
- Odd integer \rightarrow not divisible by 2
- Odd \pm Odd = Even
- Even \pm Even = Even
- \quad Odd \pm Even $=$ Odd
- Even \pm Odd = Odd
- Odd*Odd = Odd
- Odd*Even = Even
- Even*Even = Even
- $(o d d)^{n}=o d d$
- $(e v e n)^{n}=$ even

50 CMATPoint

- Prime Number \rightarrow has 2 Factors only (1 and itself). Ex 2,3,5,7...
- Composite Number \rightarrow have more than 2 factors.
- 1 э- neither nor composite
- 2 - prime (only even number)
- $1 \mathrm{xn}=\mathrm{nx} 1=\mathrm{n}$
- $\mathrm{n} / 1=\mathrm{n}$
- $\mathrm{n}+0=\mathrm{n}-0=\mathrm{n}$
- Divisible by 0 is not allowed
- Fractions $\rightarrow \frac{n}{2} \Rightarrow d \neq 0$

$$
\mathrm{n}=\text { numerator, } \mathrm{d} \text { =denomination }
$$

- if $\frac{n_{1}}{d_{1}}=\frac{n_{2}}{d_{2}}$, they are equivalent fractions.

50 CMATPoint

- Addition and subtraction of fractions

$$
\begin{aligned}
& \frac{13}{5}+\frac{14}{5}=\frac{13+14}{5}=\frac{27}{5} \\
& \frac{6}{7}-\frac{3}{7}=\frac{6-3}{7}=\frac{3}{7} \\
& \frac{1}{2}+\frac{3}{4}=\frac{4+2 * 3}{2 * 4}=\frac{10}{8}=\frac{5}{4} \\
& \frac{1}{2}+\frac{3}{4}=\frac{2^{* 3}}{4(L C M)}=\frac{5}{4}
\end{aligned}
$$

- Multiplication and division of fractions

$$
\begin{aligned}
& \frac{2}{13} X \frac{7}{9}=\frac{2 x 7}{13 x 9}=\frac{14}{117} \\
& \frac{2}{5} \div \frac{3}{4}=\frac{2}{5} X \frac{4}{3}=\frac{2 x 4}{5 x 3}=\frac{8}{15}
\end{aligned}
$$

- Mixed Fraction $\rightarrow 17 \frac{1}{4}=17+\frac{1}{4}=\frac{17 \times 4+1}{4}=\frac{69}{4}$
- Decimal = 364.57
- $1.3+2.6=3.9$ (Addition with carry forward)
- $1.3 \times 2.6=0.26$ (Decimal Has as many digits after it as the sum of that of the 2 numbers)
- $5 \sqrt{1.7}=0.34$
- Real Numbers $\rightarrow+\mathrm{ve}, \mathrm{o},-\mathrm{ve}$

Absolute Value \rightarrow The number without sign

- $|x|=\mathrm{x}$ if x is positive
$=-x$ if x negative
- $x+y=y+x$
- $\mathrm{ab}=\mathrm{ba}$
- $\mathrm{a}+(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{b}+(\mathrm{a}+\mathrm{c})$
- $\quad(\mathrm{ab}) \mathrm{d}=\mathrm{a}(\mathrm{bd})=\mathrm{b}(\mathrm{ad})$
- $\quad x y+y z=y(x+z)$
- $(+\mathrm{ve})+(+\mathrm{ve})=(+\mathrm{ve})$
- $(-v e)+(-v e)=(-v e)$
- $(+v e) \times(+v e)=(+v e)$
- $(-v e) \times(-v e)=(+v e)$
- $(+v e) \times(-v e)=(-v e)$
- $\mathrm{x} \times 0=0$
- $|x+y| \leq|x|+|y|$
- $2: 3=\frac{2}{3}=0.67$
(Ratio can be represented in these ways)
- If a value x is greater than 100% of a value $y, x>y$

$$
\begin{aligned}
& 130 \%=\frac{130}{100}=1.3 \\
& 130 \% \text { of } \mathrm{y}=1.3 \mathrm{y}
\end{aligned}
$$

- If a value x is less than 1% of y

$$
\mathrm{x}<\frac{1}{100} y
$$

- Percentage change $=\frac{\text { change in value }}{\text { Initial value }} \times 100 \%$
- If x becomes $y, \%$ change $=\frac{|y-x|}{x} \times 100 \%$
- If $y>x, \%$ increase, else \% decrease
- Successive \% change of $\mathrm{a} \%$ and $\mathrm{b} \%=\left(\mathrm{a}+\mathrm{b}+\frac{a b}{100}\right) \%$
so, if 100 increases by 20% and then 30%, \%

$$
\text { increase }=\left(20+30+\frac{20 \times 30}{100}\right)=56 \%
$$

$$
\begin{aligned}
\rightarrow a^{b}=a & \times a \times a \times \ldots . .(\text { upto } b \text { times }) \\
& \rightarrow 5^{3}=5 \times 5 \times 5 \\
& \rightarrow(-5)^{3}=-5 \times-5 \times-5 \\
& \rightarrow(0.5)^{3}=0.5 \times 0.5 \times 0.5
\end{aligned}
$$

- $a^{2} \rightarrow$ a squared
- $(n)^{\text {even }}=$ Positive (if n is positive)
$=$ Positive (if n is negative)
- $(n)^{\text {odd }}=$ Positive (if n is positive)

$$
\text { = Negative (if } \mathrm{n} \text { is negative) }
$$

- Square root $=\sqrt{a} \rightarrow a$ cannot be ne gative
- $\sqrt{25}=\sqrt{5^{2}}=5$

$$
a_{1}+a_{2}+\ldots . .+a_{n}
$$

- Mean $=$ Average =

$$
n
$$

- Median is the middle number of a list when arranged in ascending/descending order
(It is the average of the middle 2 numbers if the number of numbers is even)
\rightarrow Mode - The most frequent number in a list

$$
\begin{aligned}
& \rightarrow|A \cup B|=|A|+|B|-|A \cap B| \\
& \rightarrow \mathrm{n}!=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots . . .! \\
& \rightarrow 0!=1!=1 \\
& \rightarrow{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{\mathrm{r}!\mathrm{n}-\mathrm{r}!}
\end{aligned}
$$

$\rightarrow \mathrm{P}(\mathrm{E})=\frac{\text { The number of favourable outcomes }}{\text { The total number of outcomes }}$
$\rightarrow \mathrm{P}($ Aor B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
(If A \& B are mutually exclusive)
$\rightarrow \mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
(If A \& B are not mutually exclusive)

Telegram

GMATPoint Telegram channel

Subscribe To GMATPOINT YouTube Channel

- YouTube

Free GMAT Preparation Online
3O C A A D Dint

