\approx CMAPPoint

GMAT RATIO AND PROPORTIONS FORMULAS PDF

By GMATPoint.com

Ratio and Proportion Tips Formulae and shortcuts

- Ratio and Proportion
- One of the most basic GMAT topics is ratio and proportions. It's merely a continuation of high school math.
- The fundamentals of this notion are significant not only in their own right, but also in answering questions about other concepts.
- All ratio and proportion problems need the use of the ratio proportion formula. We may simplify our work and save a lot of time by using the ratio

$\%$ CMATPoint

proportion formula. So, here are the formulas for proportional ratios.

- A ratio can only compare two numbers with the same unit, and the sign we use to denote a ratio is
":" In a faction, we use "/" and "to" to represent a ratio.
- The Ratio of the number a to the number $b(b \neq 0)$ is $\frac{a}{b}$
- Example: A ratio, for example, can be expressed or represented in a variety of ways. For instance, the ratio of 2 to 3 can be expressed as 2:3 or $\frac{2}{3}$
- The order in which the terms of a ratio are written is important. The ratio of the number of months having precisely 30 days to the number of months with exactly 31 days, for example is $\frac{4}{7}$, not $\frac{7}{4}$
- It is not necessary for a ratio to be positive. When dealing with quantities of objects, however, the ratios will be positive. Only positive ratios will be considered in this notion.
- A ratio remains the same if both antecedent and consequent are multiplied or divided by the same non-zero number, i.e.,

$$
\begin{aligned}
& \frac{a}{b}=\frac{p a}{p b}=\frac{q a}{q b}, \mathrm{p}, \mathrm{q} \neq 0 \\
& \frac{a}{b}=\frac{a / p}{b / p}=\frac{a / q}{b / q}, \mathrm{p}, \mathrm{q} \neq 0
\end{aligned}
$$

50 CMATPoint

- Two ratios in fraction notation can be compared in the same way that actual numbers can.

$$
\begin{aligned}
& \frac{a}{b}=\frac{p}{q} \Leftrightarrow a q=b p \\
& \frac{a}{b}>\frac{p}{q} \Leftrightarrow a q>b p \\
& \frac{a}{b}<\frac{p}{q} \Leftrightarrow a q<b p
\end{aligned}
$$

- If $\mathrm{a}, \mathrm{b}, \mathrm{x}$ are positive, then

If $\mathrm{a}>\mathrm{b}$, then $\frac{a+x}{b+x}<\frac{a}{b}$
If $\mathrm{a}<\mathrm{b}$, then $\frac{a+x}{b+x}>\frac{a}{b}$
If $\mathrm{a}>\mathrm{b}$, then $\frac{a-x}{b-x}>\frac{a}{b}$
If $\mathrm{a}<\mathrm{b}$, then $\frac{a-x}{b-x}<\frac{a}{b}$
If $\frac{a}{p}=\frac{b}{q}=\frac{c}{r}=\frac{d}{s}=\ldots$,
then a:b:c:d:... = p:q:r:s:...

- If two ratios $\frac{a}{b}$ and $\frac{c}{d}$ are equal
- $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{b}{a}=\frac{d}{c}$ (Invertendo)
- $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{c}{a}=\frac{b}{d}$ (Alternendo)
- $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a+b}{b}=\frac{c+d}{d}$ (Componendo)
- $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a-b}{b}=\frac{c-d}{d}$ (Dividendo)
- $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a+b}{a-b}=$ (Componendo-Dividendo)
- $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d} \Rightarrow \mathrm{pa}+\mathrm{qb} / \mathrm{ra}+\mathrm{sb}=\mathrm{pc}+\mathrm{qd} / \mathrm{rc}+\mathrm{sd}$, for all real p, q, r, s such that $p a+q b \neq 0$ and $r c+s d \neq 0$
- If $a, b, c, d, e, f, p, q, r$ are constants and are not equal to zero
$\rightarrow \frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots$ then each of these ratios is
equal to $\frac{a+c+e \ldots}{b+d+f \ldots}$
$\rightarrow \frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots$ then each of these ratios is
equal to $\frac{p a+q c+r e \ldots}{p b+q d+r f \ldots}$
\rightarrow Duplicate Ratio of $\mathrm{a}: \mathrm{b}$ is $a^{2}: b^{2}$
\rightarrow Sub-duplicate ratio of $\mathrm{a}: \mathrm{b}$ is $\sqrt{a}: \sqrt{b}$
\rightarrow Triplicate Ratio of $\mathrm{a}: \mathrm{b}$ is $a^{3}: b^{3}$
\rightarrow Sub-triplicate ratio of $\mathrm{a}: \mathrm{b}$ is $a^{1 / 3}: b^{1 / 3}$

Proportions:

- A proportion is defined as an equalisation of ratios.
- As a result, if $a: b=c: d$ is a ratio, the first and final terms are referred to as extremes, whereas the middle two phrases are referred to as means.
- When four terms a, b, c, and d are considered to be proportionate, $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$ is the result. When three terms a, b, and c are considered to be proportionate, $\mathrm{a}: \mathrm{b}=\mathrm{b}: \mathrm{c}$ is the result.
- A proportion is a statement that two ratios are equal; for example $\frac{2}{3}=\frac{8}{12}$ is a proportion.
- One way to solve a proportion involving an unknown is to cross multiply, obtaining a new equality.
- For example, to solve for n in the proportion $\frac{2}{3}=\frac{n}{12}$, cross multiply, obtaining $24=3 n$, then divide both sides by 3 , to get $\mathrm{n}=8$

Properties of proportions:

- If $a: b=c: d$ is a proportion, then Product of extremes
$=$ product of means i.e., $\mathrm{ad}=\mathrm{bc}$
- Denominator addition/subtraction: $\mathrm{a}: \mathrm{a}+\mathrm{b}=\mathrm{c}: \mathrm{c}+\mathrm{d}$ and $a: a-b=c: c-d$
- a, b, c, d, \ldots are in continued proportion means, $a: b=$ $\mathrm{b}: \mathrm{c}=\mathrm{c}: \mathrm{d}=\ldots$.
- $\mathrm{a}: \mathrm{b}=\mathrm{b}: \mathrm{c}$ then b is called mean proportional $\mathrm{and} b^{2}=$ ac
- The third proportional of two numbers, a and $b, i s c$, such that, $\mathrm{a}: \mathrm{b}=\mathrm{b}: \mathrm{c} . \mathrm{d}$ is fourth proportional to numbers a, b, c if $a: b=c: d$

Variations:

- If x varies directly to y , then x is said to be in directly proportional with y and is written as $\mathrm{x} \propto \mathrm{y}$
$\rightarrow \mathrm{x}=\mathrm{ky}$ (where k is direct proportionality constant)
$\rightarrow \mathrm{x}=\mathrm{ky}+\mathrm{C}$ (If x depends upon some other fixed constant C)
- If x varies inversely to y , then x is said to be in inversely proportional with y and is written as $x \propto \frac{1}{y}$
$\rightarrow x=k \frac{1}{y}$ (where k is indirect proportionality constant)
$\rightarrow x=k \frac{1}{y}+\mathrm{C}$ (If x depends upon some other
fixed constant C)
- If $x \propto y$ and $y \propto z$ then $x \propto z$
- If $x \propto y$ and $x \propto z$ then $x \propto(y \pm z)$
- If $a \propto b$ and $x \propto y$ then $a x \propto$ by

Subscribe To GMATPOINT YouTube Channel

- YouTube

For free GMAT preparation visit: https://gmatpoint.com/gmat-online-coaching

